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An improved analysis for axisymmetric stress
distributions in the single fibre pull-out test
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Elastic stress transfer in the fibre pull-out problem has been investigated quite extensively

using various shear lag analyses. These analyses grossly underestimate the severity of the

stress concentration at the fibre—matrix interface. In this study, by using the total

complementary energy approach, it is found that a stress concentration zone exists at the

interface near the fibre entry. Compared to shear lag analysis, the interfacial radial stress at

the fibre entry is found to be much higher and the interfacial shear stress reaches

a maximum not at the entry end of the fibre but in a few fibre diameters from it. It is also

shown that the magnitudes of these stress peaks reduce with increasing b/a and L/a ratios.

At large b/a and L/a ratios, the maximum radial and shear stresses at the interface reach

a plateau and are independent of the loading methods considered. Finally, the implications

of these stress concentrations on the failure of the matrix and interface and the specimen

geometry in determining the interfacial shear strength are discussed.
1. Introduction
1.1. Elastic stress transfer analysis
Elastic stress transfer is crucial to the understanding of
interfacial debonding between the fibre and matrix in
the fibre pull-out problem, idealized in Fig. 1. This is
because the shear bond strength or interfacial shear
strength between the fibre and the matrix is deter-
mined from a correlation of the experimental data and
the stress distribution at the fibre—matrix interface
derived from theory. To analyse the elastic stresses at
the bonded surface between the fibre and matrix, vari-
ous analytical and numerical models [1—5] have been
developed. The assumptions common to these differ-
ent approaches are that the fibre and matrix are
considered to be isotropic, homogeneous and linear
elastic and that the bonding between the fibre and
matrix is perfect. At the interface between the fibre and
matrix, there exists a very small volume of material
known as the interphase layer. Because the properties
of the interphase cannot be determined accurately, the
interphase is assumed to have the same properties as
the bulk matrix. Also, the transition from matrix to
fibre is modelled as a sharp corner rather than a menis-
cus as this is regarded as having the most critical
influence on the stress field.

Of the several models mentioned above, it is noted
that the shear lag analysis grossly underestimates the
severity of the stress concentration at the fibre entry.
The magnitude of the interfacial radial stress at the
fibre entry is predicted to be much less than the inter-
facial shear stress [1]. Finite element studies [5, 6] on
the other hand, yield results that are the exact oppo-
site. In the case of shear lag models, the radial strains
in the matrix are often assumed to be negligible in
0022—2461 ( 1997 Chapman & Hall
comparison with the axial and shear strains. This
assumption might account for the wide differences in
radial stress distributions between shear lag and finite
element analyses.

Another observation is that a maximum value of the
interfacial shear stress, s

*
, is predicted at the entry end

of the fibre. This does not, however, satisfy the trac-
tion-free boundary condition on the matrix surface
perpendicular to the fibre entry in the physical pro-
blem and, is in violation of the principle of com-
plementary shear stresses. For the fixed matrix bottom
(FMB) loading method shown in Fig. 1a, in which
only an axial stress is applied to the fibre, the surface
of the matrix at the fibre entry is stress free. Thus,
an element of the matrix, as shown in Fig. 1a, is in
a state of plane stress. Apart from the surface of the
matrix at the outer radius, r"b, surfaces elsewhere on
which a plane state of stress exists are marked in
Fig. 1.

The reason for this finite value of s
*
at the fibre entry

is that there are more boundary conditions to be
satisfied than required for solution of the stresses in
the fibre [2]. The choice of which boundary condi-
tions must be satisfied determines whether or not the
solutions for the stresses in the fibre and matrix are
reasonable and realistic. When the boundary condi-
tions, including the stress free boundary condition on
the surface of the matrix at the fibre entry are com-
pletely satisfied, as in the three-dimensional elasticity
solution of the pull-out problem, maximum interfacial
shear stress occurs not at the fibre entry but a few fibre
diameters from it [4]. However, the methodology is
more complex and numerical difficulties encountered
in the solution process give rise to oscillatory
5457
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Figure 1 Schematic illustrations of loading methods on fibre pull-
out for (a) fixed matrix bottom and (b) restrained matrix top. (X)
Stress free surfaces.

behaviour of the radial stress fields in the stress con-
centration region near the fibre—matrix interface.

1.2. Stress singularity
In linear elasticity theory, it is recognized that singu-
larities generally occur at the corners of geometric
boundaries in which two dissimilar materials are
joined together, such as at the square corner between
the fibre and matrix at the entry end of the fibre. Finite
element results seem to indicate the existence of such
a singularity. However, to conclude that the stresses
(in this case, the shear stress) are singular because they
are large in magnitude is misleading because the stres-
ses are extrapolated to the nodal points and as such,
the stresses computed at a given point are essentially
‘‘smeared’’. Also, when the stress gradient is very steep
over a very short distance, such as near the free surface
corner between the fibre and matrix, it is doubtful
whether the finite element method has adequate re-
5458
solution to pick up the rapid change in the shear
stress. Furthermore, it is noted that the finite element
procedure does not allow stress free boundary condi-
tions to be imposed in the solution process. Studies
[7] have shown that at best, finite element results are
known to be accurate only in a region very close to the
stress concentration zone. More recently, finite ele-
ments results [8, 9] have shown that the interfacial
shear stress reaches a maximum not at the fibre entry
but within a very short distance from it and that the
stress fields at the fibre entry are definitely not singu-
lar. Nevertheless, a stress concentration zone would be
expected at the interface near the fibre entry.

The above discussions have intimated the possibili-
ty of zero interfacial shear stress at the fibre entry [10].
This notion seems plausible in spite of the lack of
experimental data, if stress photoelastic ‘‘measure-
ments’’ for fibre push-out [11] are accepted as indica-
tive of similar stress distributions in the fibre pull-out
problem.

1.3. An improved analysis
The discussions in the preceding sections highlight the
shortcomings in the shear lag theory and the need for
a more accurate analytical approach to determine the
severe stress concentrations at the interface between
the fibre and matrix at the fibre entry. The use of the
total complementary energy principle is proposed.
This principle has been applied recently to the study of
the stress distributions in the fibre—matrix system
[12]. Such a technique utilizes assumed stress func-
tions that satisfy exactly the axisymmetric differential
equations of equilibrium from the linear theory of
elasticity. The assumed stress functions take into con-
sideration the stress variations in both the radial as
well as axial directions. The exact forms of these stress
functions are found from the boundary conditions of
the problem and by minimizing the total complemen-
tary energy in the fibre and matrix. An advantage of
this technique is that as many energy terms as neces-
sary can be included. However, the method becomes
more complicated but is less complex in comparison
with the three-dimensional elasticity solution [4]. In
the following sections, an improved analysis is de-
veloped and used to determine the stress concentra-
tions at the fibre—matrix interface.

2. Analytical procedure
The total complementary energy approach to the
solution of axisymmetric stress distributions in a fibre
embedded in a hollow cylindrical matrix is well
documented [12]. The complementary strain energy
in the linear elastic fibre—matrix system is given by
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Because the problem is axisymmetric, s
rh
"shz

"0. In
the previous analysis [12], the underlined terms,
which are the complementary strain energy contribu-
tions due to the radial and circumferential stresses,
were neglected. The minimization of º* then resulted
in a second-order differential equation requiring only
two boundary conditions for its solution. The bound-
ary conditions to be satisfied are the same as those
employed in the shear lag analysis, namely, that
r"r

0
, the applied stress at the entry end of the fibre

(z"0) and r"0 at the exit end (z"¸), in Fig. 1.
However, as pointed out in [2], there are in fact more
than two boundary conditions to be satisfied, the third
condition being that the shear stress is zero along the
matrix surface (r*a, z"0) for the FMB loading con-
dition. A fourth condition not mentioned in [2], arises
at the interface between the fibre and matrix at the exit
end of the fibre, z"¸. Here, the stress free surface of
the fibre dictates that the interfacial shear stress at the
square corner between the fibre and matrix is also
zero. Now, a judicious choice of which of the four
boundary conditions are to be satisfied has to be made
in order to obtain reasonable stress solutions. The
final choice disregards the stress free boundary condi-
tions and inevitably, leads to a finite value of s

*
at the

entry end of the fibre [2]. This discrepancy can be
corrected using the total complementary energy ap-
proach. By including the underlined terms in Equa-
tion 1, the resulting differential equation following the
minimization process would be of fourth-order. All
the four boundary conditions can now be utilized to
obtain a more complete solution. However, the pro-
cess becomes more tedious because the integrands in
Equation 1 are more complicated. The details of the
procedure are given in the Appendix.

3. Results and discussion
3.1. Comparison with a previous analysis
3.1.1. The fixed matrix bottom loading

method
Results from the present analysis are compared with
those from a previous analysis [12]. Fig. 2a—e shows
the stress distributions normalized to the applied
stress, r

0
, in a carbon fibre—epoxy composite for the

FMB loading condition. The position of z"0 corres-
ponds to the fibre entry. The composite has the follow-
ing properties: E

&
"230 GPa, E

.
"3 GPa, t

&
"0.2,

v
.
"0.4, b/a"20, ¸"0.5 mm. A stress of

r
0
"1.0 GPa is applied to the fibre. From Fig. 2a it is

seen that the axial stress in the fibre is increased while
the axial stress in the matrix, Fig. 2b, is correspond-
ingly reduced. The turning point at z"0 in Fig. 2a
ensures stress continuity in the protruding length of
the fibre where r

0
is applied. The most significant

differences observed are the shear stress, s
*
and the

radial stress, rr
*
, at the interface due to Poisson’s effect.

Fig. 2c shows two ‘‘humps’’ in the interfacial shear
stress distribution along the fibre. The first maximum
occurs near the entry end of the fibre and is much
larger than the magnitude of the second maximum
near the exit end. There is also a significant reduction
in the maximum interfacial shear stress, s

* (.!9)
, near
the entry end of the fibre. s
* (.!9)

from the present
analysis is only about 70% of the finite value from the
previous analysis. This suggests that the interfacial
shear strength, s

4
, determined from fibre pull-out test

data using shear lag analysis would be a conservative
estimate. Also, s

* (.!9)
occurs about five—six fibre dia-

meters from the fibre entry end. In Fig. 2d, the maxi-
mum radial interfacial stress, rr

* (.!9)
, at the fibre entry

is about five—six times the value obtained previously
and is much larger than s

* (.!9)
. The interfacial radial

stress, rr
*
, decreases very rapidly along the fibre,

changing from tensile to compressive in a few fibre
diameters from the fibre entry. At fibre entry in the
radial direction, there is a more gradual decrease in
the radial stress distribution rr

.
(r*a, z"0), in the

matrix as shown in Fig. 2e. The interfacial circum-
ferential stress in the matrix rh

.
, is of the same magni-

tude as rr
.

but is compressive.
From this improved analysis, it may be stated that

at the fibre entry, the fibre—matrix interface is sub-
jected to a severe stress concentration due to the very
large radial and circumferential stresses. A few fibre
diameters away, the interfacial shear stress, s

*
, reaches

a maximum. Note that a material point of the matrix
at the free surface is in a state of plane stress (Fig. 1),
with rr

. (.!9)
(tensile) and rh

. (.!9)
(compressive) being

the principal stresses. The maximum shear stress in
the element has the same magnitude and acts on
planes inclined at 45° to the r!h direction. The
effects of these stress concentrations on debonding
between the fibre and matrix and on the failure of the
matrix will be discussed in a later section.

3.1.2. Restrained matrix top (RMT) loading
method

Fig. 3a—e shows the stress distributions in the same
fibre—matrix system with the matrix top restrained.
The results are similar to FMB, with s

* (.!9)
signifi-

cantly reduced and rr
* (.!9)

very large at the entry end
of the fibre compared with the previous analysis. s

* (.!9)
and rr

* (.!9)
for the RMT loading method are greater

than for FMB, agreeing with previous analysis [1, 12].
It is noted that an element of the matrix beneath the
top restraint is in a three-dimensional state of stress.

3.2. The influence of radial stresses on
failure in the pull-out test

The severe stress concentration near the fibre entry
will cause failure of the fibre—matrix interface. The
mode of failure will depend on the relative magnitudes
of the interfacial radial and shear stresses. Specimen
geometry, defined in terms of the b/a and ¸/a ratios, is
anticipated to have an influence on their relative mag-
nitudes and will now be considered.

3.2.1. Influence of b/a ratio
The influence of the b/a ratio on the stress distribu-
tions in the fibre—matrix composite is investigated.
The results for four values of b/a ratios are shown in
5459
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Fig. 4a—d for FMB and Fig. 5a—d for RMT loading
methods.

At a ratio of b/a'90, the stress distributions in the
fibre for both loading methods have become quite
identical (Figs 4a and 5a). Note the very rapid de-
crease in the axial stress in Fig. 4a at large b/a ratios.
The shear stress transfer is spread over a longer dis-
tance at the interface resulting in lower peak stresses in
comparison with the spikes at a smaller b/a ratio
(Figs 4c and 5c). For the FMB loading method, the
first maximum of s

*
near the entry end of the fibre is

reduced, more slowly initially and then more rapidly,
as the b/a ratio increases and the second maximum at
the exit end of the fibre has almost completely disap-
peared when b/a'50. In contrast, for the RMT load-
ing method, the maximum interfacial shear stress
drops sharply with an increase in b/a. A large b/a ratio
also reduces the maximum interfacial radial stress,
5460
Figure 2 Comparison of normalized stress distributions in the
FMB loading configuration between present analysis ( — — — — ) and
previous analysis (—— ). (a) axial fibre stress, (b) axial matrix
stress, (c) interfacial shear stress, (d) interfacial radial stress, along
the z-direction; and (e) radial stress in the matrix in the direction of
thickness.

rr
* (.!9)

, drastically (Figs 4d and 5d). For the FMB
loading method, the radial stress at the interface at the
fibre entry is tensile due to Poisson’s contraction of
the fibre, while at the exit end it is compressive due to
Poisson’s contraction of the matrix. At a small b/a
ratio, rr

*
for the FMB loading method at both the

entry and exit ends of the fibre are nearly equal in
magnitude. Fig. 6 elucidates the differences in the
maximum stresses in the two loading methods as the
b/a ratio is increased. At a small b/a ratio, the differ-
ence in the magnitudes of both the peak stresses, sr

* (.!9)
and rr

* (.!9)
, is more pronounced. The peak stresses for

the RMT loading condition are greater than the cor-
responding stresses for the FMB loading condition at
the same b/a ratio. For b/a'100, sr

* (.!9)
and rr

* (.!9)
for

both loading methods are identical, with sr
* (.!9)

greater
than rr

*(.!9)
. Beyond b/a"100, the stresses reach

a plateau indicating the independence of the maxi-
mum stresses upon the loading method.

From this study, it may be seen that at a large b/a
ratio, the stress transfer is more effective in that the
peak stresses are significantly reduced although this is
accompanied by an increase in the axial stress in the
fibre. It is easier to initiate debonding between the
fibre and matrix at a small b/a ratio due to high
interfacial radial stresses. A large b/a ratio should give
a more consistent estimate of the interfacial shear
JMS 60216



strength, s
4
, using either the FMB or RMT loading

method. Also to be considered important is the large
reduction in the radial stress at the interface at large
b/a ratios, which is likely to affect the initial mode of
failure of the composite.

3.2.2. Influence of L/a ratio
It is known that interfacial debonding is unstable
when very short fibres are used in the pull-out test. To
investigate the cause of this instability, it is necessary
to evaluate the effect of fibre length on the magnitude
of the stresses at the interface. The results of such
a study are shown in Fig. 7 where the normalized
maximum radial and shear stresses at the interface are
plotted against the ¸/a ratio. Both pr

* (.!9)
and

s
* (.!9)

decrease in magnitude as the ¸/a ratio increases.
The decrease in rr

*(.!9)
is very steep. At fibre lengths
Figure 3 Comparison of normalized stress distributions in RMT
loading configuration between present analysis ( — — — — ) and pre-
vious analysis ( ——): (a) axial fibre stress, (b) axial matrix stress,
(c) interfacial shear stress, (d) interfacial radial stress, along the
z-direction; and (e) radial stress in the matrix in the thickness
direction.

much less than 20a, rr
* (.!9)

is much higher than s
*(.!9)

.
For ¸/a'100, the magnitude of s

* (.!9)
is about twice

that of rr
* (.!9)

.
The reason for unstable interfacial debonding at

very short fibre lengths becomes clear. It is caused by
the combined effects of very large interfacial radial
and shear stresses. On the other hand, at large ¸/a
ratios, much reduced interfacial stresses allow for
stable debonding.

3.2.3. Failure modes
The preceding analysis shows that there is a stress
concentration in a very small zone at the interface
near the fibre entry. The magnitude of the peak stres-
ses is influenced by both the b/a and ¸/a ratios;
decreasing with increasing b/a and ¸/a ratios. The
interfacial radial stress is tensile and is a maximum at
the entry end of the fibre, whereas s

*
is a maximum at

a short distance into the fibre.
The state of stress near the interface is complicated

by the presence of shrinkage stresses due to processing
and subsequent cooling down to room temperature.
These stresses are compressive and arise from the
differences in the coefficients of thermal expansion and
material properties of the fibre and matrix. The result-
ant radial stress at the interface is affected by the
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Figure 4 Influence of the b/a ratio on normalized stress distributions in the FMB loading configuration: (a) axial fibre stress, (b) axial matrix
stress, (c) interfacial shear stress, and (d) interfacial radial stress, along the z-direction. (——) b/a"10, ( — — — ) b/a"20, ( · · · ) b/a"50,
( — · — · ) b/a"90.

Figure 5 Influence of the b/a ratio on normalized stress distributions in the RMT loading configuration: (a) axial fibre stress, (b) axial matrix
stress, (c) interfacial shear stress, and (d) interfacial radial stress, along the z-direction. (——) b/a"10, ( —— — ) b/a"20, ( · · · ) b/a"50,
( — · — ) b/a"90.
5462
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Figure 6 Comparison of the maximum normalized radial stress and shear stress at the interface for the RMT (L— ), ( ) and FMB ( ·#· ),
(—j— ) loading methods, respectively, for different b/a ratios.
Figure 7 Effect of ¸/a ratio on the normalized maximum interfacial
radial (—d— ) and shear stresses (L— ) for the FMB loading method.

relative magnitudes of the shrinkage stress, and the
maximum tensile interfacial radial stress, rr

* (.!9)
, due

to the Poisson’s effect. For debonding due to the
opening mode, the shrinkage stress must be over-
comed by rr

* (.!9)
. At small b/a ratios, rr

* (.!9)
is large

and debonding is mode I dominant. As rr
* (.!9)

de-
creases with increasing b/a ratio, debonding based on
the interfacial shear strength criterion becomes mode
II dominant. At intermediate values of b/a, debonding
is a mixed mode failure. With short fibre lengths,
debonding becomes unstable due to the adverse com-
bined effects of large interfacial radial and shear stres-
ses. This further suggests that the mode of failure is
highly dependent upon specimen geometry. Because
debonding failure at small b/a and ¸/a ratios is mode
I dominant, the use of such specimens to determine the
Figure 8 Matrix lump adhering to fibre end.

interfacial shear strength would lead to erroneous
results.

Apart from debonding, there is also the possibility
of shear failure in the matrix. It has been observed
[13, 14] that pulled-out fibres usually have a lump of
matrix, roughly conical in shape, adhering to the fibres
at the entry ends with debonding initiated at a very
short distance from it. This phenomenon, as illus-
trated in Fig. 8, suggests that the matrix first fails in
a ‘‘ring’’ around the fibre. From experimental observa-
tions, this shearing of the matrix does not initiate at
the interface but at a very short distance from it.
Yielding of the matrix appears to be constrained by
the presence of the fibre. Also, the properties of the
interface are different from those of the bulk matrix.
Close to the interface, however, both the radial and
circumferential stresses in the matrix are still very
large (Figs 2e and 3e). It is not known, however, how
the shrinkage stresses are distributed in the radial
direction. Ignoring these for the moment, an explana-
tion is offered for the shearing phenomenon in the
matrix. The surface of the matrix perpendicular to
the fibre entry end is in a state of plane stress. The
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maximum shear stress, s
.!9

, is equal in magnitude to
rr
. (.!9)

and acts on planes inclined at 45° to the r—h
direction. Thus, the matrix will fail in shear if s

.!9
equals the yield stress of the matrix. Because of in-
homogeneity, yielding is likely to occur at weak spots in
the matrix. The probability of shear failure in the matrix
is higher at a small b/a ratio because the radial and
circumferential stresses in the matrix are much higher
resulting in a higher s

.!9
than at a larger b/a ratio.

The above discussion reveals that at the stress con-
centration zone near the interface, there is competition
between failure initiation by debonding or matrix fail-
ure due to shear. Matrix failure is more likely to
precede debonding at a smaller b/a ratio because the
radial and circumferential stresses and hence s

.!9
, are

increased (Fig. 6). Debonding at the interface is pro-
moted for b/a'100 because the magnitudes of the
radial and circumferential stresses are less than s

*
.

4. Conclusions
An analytical method that is an improvement over the
shear lag models in determining the elastic stress
transfer in a perfectly bonded, linear elastic
fibre—matrix system, is presented. This method is an
extension of the total complementary energy ap-
proach developed previously and includes in its for-
mulation, the complementary strain energies in the
fibre and matrix due to radial and circumferential
stresses. This method leads to complete satisfaction of
the boundary conditions at the fibre ends and yields
an axisymmetric stress solution is the fibre—matrix
system that is more representative of the physical
problem. The severity of the stress concentration due
to the radial stresses at the interface is demonstrated.
The interfacial shear stress is found to reach its maxi-
mum value in a few fibre diameters from the entry end
of the fibre, while the interfacial radial stress at the
fibre entry is predicted to be significantly higher than
given in a previous analysis.

An increase in the b/a ratio causes shear stress
transfer to take place over a longer distance at the
interface, thereby reducing the peak stresses. The effect
of these reductions is to alter the mode of debonding
from being mode I dominant at a smaller b/a ratio to
mode II dominant at a larger b/a ratio. Furthermore,
at a small b/a ratio, yielding of the matrix at the free
surface is more likely due to the high shearing stress
caused by the stress concentration arising from the
radial and circumferential stresses. Whereas, a large
b/a ratio tends to promote debonding without the
matrix yielding. When fibre lengths are very short,
interfacial debonding becomes unstable due to the
adverse combination of large radial and shear stresses
at the interface near the fibre entry. Thus, the use of
specimens with small b/a and ¸/a ratios in a fibre
pull-out test to determine the interfacial shear strength
should be avoided.

Appendix
An improved method for obtaining the stress distribu-
tions in the fibre and matrix has been developed. The
5464
technique is illustrated for the FMB loading condi-
tion. The details and definitions of symbols used are
given in reference [10].

For FMB, the stresses are [10], for the fibre
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where the subscripts f and m refer to the fibre and
matrix respectively. r, h and z are the cylindrical co-
ordinates as shown in Fig. 1.

The generalized Hooke’s law is
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Neglecting srz
&
, the complementary strain energy º* in

the fibre and matrix is, from Equation 1
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Using Equation A3 in Equation A4 and noting that
rr"rh, gives
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Each of the integrands in Equation A5 can be evalu-
ated using the results from Equation A1. The simplifi-
ed form of Equation A5, in which rr and rh are
neglected, has been considered previously [10]. Evalu-
ation of the remaining terms is more difficult and the
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following results are quoted.
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where g
1

and g@@
1
(d2g

1
/dz2) are functions of z. Because

b<a, k2!1+k2, and the above expressions may be
further simplified. When these simplified expressions
are substituted into Equation A5, it is seen that

º"2p P
L

0

F(g
1
, g@

1
, g@@

1
) dz (A7)

The function g
1

that extremizes the complementary
energy functional, º*, is the extremal function that
satisfies the Euler—Lagrange equation

!

d2

dz2A
LF

Lg@@
1
B#

d

dz A
LF

Lg@
1
B!

LF

Lg
1

"0 (A8)

subject to the following boundary conditions

g
1
(z"0)"1, g

1
(z"¸)"0,

g@
1
(z"0)"0, g@

1
(z"¸)"0 (A9)

From Equation A2, it may be deduced that the last
two conditions are necessary because
srz
.

(r*a, z"0)"srz
.

(r*a, z"¸)"0 due to the
stress free conditions on the surfaces of the matrix at
the entry and exit ends of the fibre.

Substituting for F from Equation A7 into Equation
A8 and performing the differentiations, results in
a fourth-order linear differential equation in g

1
of

thefollowing form

a
0
gVI
1
#a

1
g@@
1
#a

2
g
1
#C

0
"0 (A10)

where

a
0
"!k2a4M2a(1!t

&
)[1#12 ln(k)2!6 ln(k)]

#(1!t
.
)[5k2!24 ln(k)2!6]N

a
1
"12a2[(1#t

.
)Mk2[4 ln(k)!3]#4N!2at

&
k2

][4 ln (k)!1]#2t
.
[k2!4ln(k)]N ]

a
2
"!48(1#ak2)

C
0
"48
a
0
, a

1
and a

2
are expressions involving the material

properties and geometry of the fibre—matrix system
and can be evaluated for a given fibre—matrix
composite.

The complete solution to Equation A10 consists of
a complementary function of the form g

1
(z)"Ae.z

and a particular integral that is a constant. The four
roots of m are found from the characteristic equation
of the complementary function in Equation A10 and
the four constants, A

1
, A

2
, A

3
and A

4
, can be ob-

tained by applying the boundary conditions in
Equations A9 to the complete solution. The solution
to Equation A10 is thus unique. In general, the
roots of the characteristic equation in m may be
complex.

Glossary of abbreviations and terms
¸ embedded length of fibre
a radius of fibre
b outer radius of matrix
r, h, z cylindrical co-ordinate system
u displacement in the radial direction, r
w displacement in the axial direction, z
r
ij

components of stress
e
ij

components of strain
r
zz

axial stress
rr, r

rr
radial stress

rh,rhh circumferential stress
r
0

axial stress applied to fibre
e
zz

axial strain
e
rr

radial strain
ehh circumferential strain

References
1. L. M. ZHOU, J. K. KIM and Y. W. MAI , Comp. Sci. ¹echnol.

45 (1992) 153.
2. C. H. HSUEH, Mater. Sci. Eng. A 154 (1992) 125.
3. C. Y. YUE and W. L. CHEUNG, J. Mater. Sci. 27 (1992)

3173.
4. R. D. KURTZ and N. J. PAGANO, Comp. Eng. 1 (1991)

13.
5. C. MAROTZKE, Comp. Sci. & ¹echnol. 50 (1994) 393.
6. Idem, Compos. Interfaces 1 (1993) 153.
7. J . D. WHITCOMB, R. S . RAJU and I . G. GOREE, J. Com-

puters & Structures 15 (1982) 23.
8. H. C. TSAI, A. M. AROCHO and L. W. GAUSE, Mater. Sci.

Eng. A 126 (1990) 295.
9. J . K. KIM, S. LU and Y. W. MAI, J. Mater. Sci. 29 (1994)

554.
10. C. L . TAN, Private communication.
11. T. W. CLYNE and M. C. WATSON, Comp. Sci. ¹echnol. 42

(1991) 25.
12. M. Y. QUEK and C. Y. YUE, Mater. Sci. Eng. A 189 (1994)

105.
13. P. S . CHUA and M. R. PIGGOT, Comp. Sci. ¹echnol. 22

(1985) 107.
14. C. Y. YUE and H. C. LOOI , Composites 26 (1995) 767.

Received 23 February 1996
and accepted 2 April 1997
.

5465

JMS 60216


	1. Introduction
	2. Analytical procedure
	3. Results and discussion
	4. Conclusions
	Appendix
	Glossary of abbreviations and terms
	References

